PETG S2008

Glycol Modified Co-Polyester

October 10, 2001

Product Characteristics

<table>
<thead>
<tr>
<th>Material Status</th>
<th>✓ Commercially active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>✓ North America</td>
</tr>
<tr>
<td></td>
<td>✓ Europe</td>
</tr>
<tr>
<td></td>
<td>✓ Asia</td>
</tr>
<tr>
<td>Test Standard Available</td>
<td>✓ ASTM</td>
</tr>
<tr>
<td></td>
<td>✓ ISO</td>
</tr>
<tr>
<td>Additive</td>
<td>✓ Mold release</td>
</tr>
<tr>
<td>Recycled Content</td>
<td>✓ No</td>
</tr>
</tbody>
</table>

Features

- High transparency
- High gloss surface
- Low haze
- Good toughness
- Design freedom
- Good chemical resistance
- Outstanding printability
- Easy fabrication
- No stress-whitening
- Good processability

- Easy processing (maintenance cost saving)
- Short cycle time in thermoforming (improved productivity)
- Easy handling
- No waste of material (reusable of scrap)

- Recyclable
- No toxic fumes or odor
- Low smoke density and toxicity
Uses (Applications)

<table>
<thead>
<tr>
<th>Film</th>
<th>Extrusion Blow Molding</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Blister packaging for stationery & tools</td>
<td></td>
</tr>
<tr>
<td>✓ Personal care</td>
<td></td>
</tr>
<tr>
<td>✓ Food packaging container</td>
<td></td>
</tr>
<tr>
<td>✓ Electrical & electronic packaging</td>
<td></td>
</tr>
<tr>
<td>✓ Pharmaceutical & medical packaging</td>
<td></td>
</tr>
<tr>
<td>✓ Toys</td>
<td></td>
</tr>
<tr>
<td>✓ Refrigerator parts</td>
<td></td>
</tr>
<tr>
<td>✓ Electric & electronic parts</td>
<td></td>
</tr>
<tr>
<td>✓ Smart cards</td>
<td></td>
</tr>
<tr>
<td>✓ Pen caps</td>
<td></td>
</tr>
<tr>
<td>✓ Medical devices</td>
<td></td>
</tr>
<tr>
<td>✓ Tools</td>
<td></td>
</tr>
<tr>
<td>✓ Bottles for packaging shampoos, soaps, detergents</td>
<td></td>
</tr>
<tr>
<td>✓ Bottles for pharmaceutical & medical packaging</td>
<td></td>
</tr>
</tbody>
</table>

Agency Rating (Regulation Status)

<table>
<thead>
<tr>
<th>FDA (U.S Food and Drug Administration) 21 CFR 177.1315 (b) 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ In contact with foods, including foods containing no more than 25 vol.% aqueous alcohol, excluding carbonated beverages and beer</td>
</tr>
<tr>
<td>✓ Hot fill not exceed 82.2°C (180°F), storage at temp. not in excess of 48.9°C (120°F)</td>
</tr>
<tr>
<td>✓ No thermal treatment in the container</td>
</tr>
<tr>
<td>✓ In actual applications. Alcoholic content do not exceed 15% for alcoholic food contact articles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Specific migration of relevant components after contact period of half hour at 70°C and subsequently for 10 days at 40°C.</td>
</tr>
<tr>
<td>: 3% acetic acid</td>
</tr>
<tr>
<td>: 15% ethanol</td>
</tr>
<tr>
<td>: olive oil</td>
</tr>
<tr>
<td>✓ PETG S2008 is suitable for contact with aqueous, acidic, ethanolic (up to 15%) and fatty foodstuffs for half hour at 70°C and subsequently for any time at room temperature.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UL(Underwriters Laboratories) 94</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ UL File No: QMFZ2. E215991</td>
</tr>
<tr>
<td>✓ HB : Minimum thickness 1.6 mm</td>
</tr>
<tr>
<td>✓ V-2: Minimum thickness 3.2 mm</td>
</tr>
</tbody>
</table>
Appearance & Forms

<table>
<thead>
<tr>
<th>Appearance</th>
<th>✓ Clear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓ Color available</td>
</tr>
</tbody>
</table>

| Forms | ✓ Spherical pellets |

Processing Method

<table>
<thead>
<tr>
<th>Primary Processing</th>
<th>✓ Extrusion (Film)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓ Extrusion (Profile)</td>
</tr>
<tr>
<td></td>
<td>✓ Extrusion (Compounding)</td>
</tr>
<tr>
<td></td>
<td>✓ Extrusion Blow Molding</td>
</tr>
<tr>
<td></td>
<td>✓ Injection Molding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Fabrication</th>
<th>✓ Thermoforming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓ Welding</td>
</tr>
</tbody>
</table>
Product Data Sheet S2008

Injection Molded Property (ASTM Method)

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>ASTM D792</td>
<td>-</td>
<td>1.27</td>
</tr>
<tr>
<td>Mold Shrinkage Parallel to Flow</td>
<td>ASTM D955</td>
<td>%</td>
<td>0.3 - 0.6</td>
</tr>
<tr>
<td>Rockwell Hardness</td>
<td>ASTM D785</td>
<td>R-scale</td>
<td>110</td>
</tr>
<tr>
<td>Water Absorption (24 hr immersion)</td>
<td>ASTM D570</td>
<td>%</td>
<td>0.13</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Strength @ Yield 50mm/min (2 inch/min)</td>
<td>ASTM D638</td>
<td>MPa (kgf/cm²)</td>
<td>50 (510) 7300</td>
</tr>
<tr>
<td>Tensile Strength @ Break 50mm/min (2 inch/min)</td>
<td>ASTM D638</td>
<td>MPa (kgf/cm²)</td>
<td>28 (290) 4100</td>
</tr>
<tr>
<td>Elongation @ Break 50mm/min (2 inch/min)</td>
<td>ASTM D638</td>
<td>%</td>
<td>140</td>
</tr>
<tr>
<td>Flexural Strength 1.27mm/min (0.05 inch/min)</td>
<td>ASTM D790</td>
<td>MPa (kgf/cm²)</td>
<td>73 (745) 10600</td>
</tr>
<tr>
<td>Flexural Modulus 1.27mm/min (0.05 inch/min)</td>
<td>ASTM D790</td>
<td>MPa (kgf/cm²)</td>
<td>2110 (21500) 305000</td>
</tr>
<tr>
<td>Izod Impact Strength, Notched @ 23 °C(73 °F)</td>
<td>ASTM D256</td>
<td>J/m(kgf·cm/cm)</td>
<td>100 (10.2) 1.88</td>
</tr>
<tr>
<td>Impact Resistance (Puncture) Energy Max. Load in 3.2mm Thick Plaque (0.125 inch) at 23 °C(73 °F), 220mm/min.</td>
<td>ASTM D3763</td>
<td>ft lbf/in.</td>
<td>33</td>
</tr>
</tbody>
</table>

Thermal

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Distortion Temperature @ 0.455 MPa(66 psi)</td>
<td>ASTM D648</td>
<td>°C (°F)</td>
<td>70 (158)</td>
</tr>
<tr>
<td>@ 1.82 MPa(264 psi)</td>
<td></td>
<td>°C (°F)</td>
<td>64 (147)</td>
</tr>
<tr>
<td>Vicat Softening Temperature @ 1kg load</td>
<td>ASTM D1525</td>
<td>°C (°F)</td>
<td>85 (189)</td>
</tr>
<tr>
<td>Glass Transition Temperature (Tg)</td>
<td>DSC method</td>
<td>°C (°F)</td>
<td>80 (176)</td>
</tr>
</tbody>
</table>

Electrical

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Strength (Short-time, 500v/sec.)</td>
<td>ASTM D149</td>
<td>kV/mm (V/mil)</td>
<td>16 (410)</td>
</tr>
<tr>
<td>Volume Resistivity</td>
<td>ASTM D257</td>
<td>Ohm cm</td>
<td>10¹⁵</td>
</tr>
<tr>
<td>Surface Resistivity</td>
<td>ASTM D257</td>
<td>Ohm</td>
<td>10¹⁶</td>
</tr>
<tr>
<td>Dielectric Constant @ 1kHz</td>
<td>ASTM D150</td>
<td>-</td>
<td>2.6</td>
</tr>
<tr>
<td>@ 1MHz</td>
<td></td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>Dissipation Factor @ 1kHz</td>
<td>ASTM D150</td>
<td>-</td>
<td>0.005</td>
</tr>
<tr>
<td>@ 1MHz</td>
<td></td>
<td></td>
<td>0.023</td>
</tr>
<tr>
<td>@ 1MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flammability

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL Flammability Classification @ min. 1.6 thickness</td>
<td>UL 94</td>
<td>-</td>
<td>HB</td>
</tr>
<tr>
<td>@ min. 3.2 thickness</td>
<td></td>
<td></td>
<td>V-2</td>
</tr>
</tbody>
</table>

The data listed here fall within the normal range of product properties, but they should not be used to establish specification limits or used alone as a basis for design. This information is not intended as a warranty of any kind. Customers must make their own representative test and assume all risks of use, whether used alone or in combination with other products.
Product Data Sheet of S2008

- **Film Property (ASTM Method)**

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of Film Tested</td>
<td>ASTM D374</td>
<td>Micron (mil)</td>
<td>250 (10)</td>
</tr>
<tr>
<td>Intrinsic Viscosity of Film Tested</td>
<td>Method</td>
<td>dl/g</td>
<td>0.75</td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>ASTM D1505</td>
<td>g/cm³</td>
<td>1.27</td>
</tr>
</tbody>
</table>

- **Optical**

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haze</td>
<td>ASTM D1003</td>
<td>%</td>
<td>0.5</td>
</tr>
<tr>
<td>Total Transmittance</td>
<td>ASTM D1003</td>
<td>%</td>
<td>91</td>
</tr>
<tr>
<td>Regular Transmittance</td>
<td>ASTM D1003</td>
<td>%</td>
<td>89</td>
</tr>
</tbody>
</table>

- **Mechanical**

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength @ Yield</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50mm/min (2 inch/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Direction (M.D)</td>
<td>ASTM D882</td>
<td>MPa (kgf/cm²)</td>
<td>52 (530)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psi</td>
<td>7500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPa (kgf/cm²)</td>
<td>52 (530)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psi</td>
<td>7500</td>
</tr>
<tr>
<td>Transverse Direction (T.D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Strength @ Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50mm/min (2 inch/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.D</td>
<td>ASTM D882</td>
<td>MPa (kgf/cm²)</td>
<td>59 (600)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psi</td>
<td>8600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPa (kgf/cm²)</td>
<td>55 (560)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psi</td>
<td>8000</td>
</tr>
<tr>
<td>T.D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Elongation @ Yield</td>
<td></td>
<td>%</td>
<td>4.5</td>
</tr>
<tr>
<td>50mm/min (2 inch/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.D</td>
<td>ASTM D882</td>
<td>%</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.D</td>
<td></td>
<td>%</td>
<td>4.5</td>
</tr>
<tr>
<td>Elongation @ Break</td>
<td></td>
<td>%</td>
<td>380</td>
</tr>
<tr>
<td>50mm/min (2 inch/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.D</td>
<td>ASTM D882</td>
<td>%</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.D</td>
<td></td>
<td>%</td>
<td>380</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50mm/min (2 inch/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.D</td>
<td>ASTM D882</td>
<td>MPa (kgf/cm²)</td>
<td>1900 (1940)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psi</td>
<td>276000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPa (kgf/cm²)</td>
<td>1900 (1940)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>psi</td>
<td>276000</td>
</tr>
<tr>
<td>T.D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tear Propagation Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split Tear Method @ 254mm/min (10 inch/min)</td>
<td>ASTM D1938</td>
<td>N (lbf)</td>
<td>9.1 (2.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/mm (lbs/in.)</td>
<td>36 (205)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Resistance (Puncture) Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Load in 250 micron film</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10 mil) at 23 °C (73 °F) 220m/min.</td>
<td>ASTM D3763</td>
<td>ft-lbf</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J</td>
<td>3.0</td>
</tr>
</tbody>
</table>

- The data listed here fall within the normal range of product properties, but they should not be used to establish specification limits or used alone as a basis for design. This information is not intended as a warranty of any kind. Customers must make their own representative test and assume all risks of use, whether used alone or in combination with other products.
Processing Information

Drying

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drying temperature</td>
<td>149 deg F (65 deg C)</td>
</tr>
<tr>
<td>Drying time</td>
<td>4 – 6 Hours</td>
</tr>
<tr>
<td>Recommend residual moisture contents</td>
<td><0.05% (500 ppm)</td>
</tr>
</tbody>
</table>

Injection Molding

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder temperature</td>
<td>473 deg F (245 deg C)</td>
</tr>
<tr>
<td>Mold temperature</td>
<td>59-104 deg F (15-40 deg C)</td>
</tr>
<tr>
<td>Speed</td>
<td>Low screw speed of 50-100 rpm</td>
</tr>
</tbody>
</table>

Extrusion Blow Molding

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel temperature</td>
<td>410 deg F (210 deg C)</td>
</tr>
<tr>
<td>Die temperature</td>
<td>383 deg F (195 deg C)</td>
</tr>
<tr>
<td>Mold temperature</td>
<td>54-68 deg F (12-20 deg C)</td>
</tr>
</tbody>
</table>

Film Extrusion for 1 mm thickness

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel temperature</td>
<td>490 deg F (255 deg C)</td>
</tr>
<tr>
<td>Die temperature</td>
<td>500 deg F (260 deg C)</td>
</tr>
<tr>
<td>Roll temperature</td>
<td>Roll 1: 90 deg F (32 deg C)</td>
</tr>
<tr>
<td></td>
<td>Roll 2: 108 deg F (42 deg C)</td>
</tr>
<tr>
<td></td>
<td>Roll 3: 149 deg F (65 deg C)</td>
</tr>
</tbody>
</table>